

KS0358 keyestudio Electronic Parts DIY Kit For OTTO Robot Maker

	Keyestudio Electronic Parts DIY Kit For OTTO Robot Maker
	1.What is Otto DIY ?

	2.Kit List

	3.3D Printing Parts

	4.Print Settings

	5.Build Your Own Otto Robot:

	6.Resources

Keyestudio Electronic Parts DIY Kit For OTTO Robot Maker

[image: KS0358 OTTO 机器人DIY套件 (1)]

1.What is Otto DIY ?

Otto is an interactive robot that anyone can make! It is completely open source, Arduino compatible and 3D printable.

Otto is able to walk, dance, make sounds and avoid obstacles. His small body is in the assembled size, with simple structure. The shelf parts are designed using 3D printer, simple electronics connections (almost no welding required), and basic coding skills.

Otto is designed using Autodesk 123D Design [https://tinkercad.com/things/1kI624iowUR] software. No need technical knowledge, perfect for beginners. You are able to modify it or even recreate them to make you own Otto robot and then share to the world!

2.Kit List

The kit includes everything you need to build your Otto in 1 hour:

NO SOLDERING REQUIRED!

Note: the print parts are Not Included!

	No.

	Component

	Quantity

	Picture

	1

	NANO Shield

	1

	[image:]

	2

	Keyestudio Nano CH340

	1

	[image:]

	3

	HC-SR04 Ultrasound Sensor

	1

	[image:]

	4

	HC-06 Bluetooth Module

	1

	[image:]

	5

	Micro Servo 9G

	4

	[image:]

	6

	Passive Buzzer

	1

	[image:]

	7

	Phillips Screwdriver

	1

	[image:]

	8

	200mm Black Connector Wire

	2

	[image:]

	9

	USB Cable

	1

	[image:]

	10

	200mm Red Connector Wire

	2

	[image:]

	11

	Female to Female Jumper Wire

	10

	[image:]

	12

	Self-locking Push Switch

	1

	[image:]

	13

	M2*12MM Round-head Screw

	2

	[image:]

	14

	M2 Nut

	2

	[image:]

	15

	M2X5MM Tapping Screw

	4

	[image:]

	16

	4 AA Battery Case with lead

	1

	[image:]

3.3D Printing Parts

And then you only need to 3D print 6 parts in total:

	3D printed head

	3D printed body

	3D printed leg x2

	3D printed right foot

	3D printed left foot

For the 3D printing parts, you can print them out with 3D printer.

That’s all simple! Download all .stl files here in Thingiverse. [http://www.thingiverse.com/thing:1568652] If you do not have a 3d
printer, you can always use services like 3dhubs.com [https://www.3dhubs.com/3d-printing] or local maker spaces.

4.Print Settings

Otto is very well designed for 3D printing, so won’t give you trouble if you follow this common parameters:

	Recommended to use a FDM 3D printer with PLA material.

	No need supports or rafts at all.

	Resolution: 0.15mm

	Fill density: 20%

Notes:

You can print individually piece by piece to match the colors of the original design or optionally print all at the same time in an area of 14cm x 14cm.

For slicing and generating the g code for the machine free slicer software like Cura or FlashPrint that comes with the FlashForge Finder 3D printer that we are using (If you are outsourcing the printing, no need to worry about it)

After printing, you will need to clean a little bit the legs and feet areas that fix the motors.

5.Build Your Own Otto Robot:

[image: all parts]
Step1: Check Your Parts From Bottom to Top

Print the attached .pdf instructions manual for convenience:

OTTO-DIY-Instruction-Manual [https://drive.google.com/open?id=1CDNzOiKPmGQcV_or11FTHmKeKFw4YQXI]

Step2: Foot Servos Assembly

[image: OTTO step 1]

Put the micro servo inside feet and then push it inside, if is to hard maybe need to clean more the area with a cutter.

Is very important to check that the servo is able to rotate at 180 degrees to each side.

After checking the movement, use only the small screw to fix it.

Same process for the other foot.

[image: OTTO step 2][image: OTTO step2]

[image: OTTO step 3]

Step3: Fix Servos to Body

Take the other 2 micro servos put them in the defined locations in the 3D printed body, and fix them only with screws.

Step4: Fix Legs to Body

[image: OTTO step 4]

Connect the legs to the hub of the micro servo, important like the foot servos, you must check the legs are able to rotate 180 degrees each side respect to the body.

After verifying the alignment, fix them using the small screws to the hole inside the leg.

Step5: Fix Foot to Legs

[image: OTTO step 5]

Taking care of the cables as showed in the illustration, you should put the cables inside the slots of the body passing through the hole of the legs.

Once they are in right position, use the pointed screws to fix them from the back.

Step6: Head Assembly

[image: QQ图片20190925125821]

Start from the ultrasound sensor is important to pull out the eyes to the limit. Then put the Arduino nano in the shield, optionally you can weld the positive cable of battery holder to Vin in the board and negative cable to any GND.

Insert diagonally the both boards together facing the USB conector to the hole in the 3D printed head, then use the pointed screws to fix it.

Step7: Electric Connection

Prepare the jumper cables, buzzer, and switch.

Then follow the diagram pins numbers and make sure to put them in the right position.

[image: OTTO step 8]

[image: OTTO step 9]

[image: KS0358]

Special note:

	When connecting the Bluetooth module, CANNOT directly plug into the shield. Or else, the space is not enough, should connect the Bluetooth module to the shield with male-to-female jumper wires. The jumper wires are Not Included in the kit list.

	When connecting well all the components and uploading the code, CANNOT press the button welded to battery case, that is, CANNOT supply the power; otherwise, code upload fails.

[image:]

Step8: Snap the Head

The Head has snap feature, take care of the cables and close it. Congrats!

[image: OTTO step 11]

[image: QQ图片20190925152239]

Step9: Arduino Programming

[image:]

For the coding part you will need to:

	Download and install Arduino softwareIDE:

https://www.arduino.cc/en/Main/Software

	Copy all libraries to C:/Users/user/Documents/Arduino/libraries (or wherever your library folder is installed)

	Connect your Otto through USB (your computer should install the drivers)

	Finally open OTTO_smooth_criminal.ino code and upload to your Arduino Nano for dancing Otto mode.

	Try OTTO_avoid.ino for obstacle avoidance

More codes in https://github.com/OttoDIY/

You can always try different codes from the same Github repository to use the ultrasound to avoid obstacles or detect objects and the buzzer to make sounds. Include all main moves very easy to adjust speed, number of times and direction.

[image: otto]

Special note:

This OTTO kit is similar to Keyestudio Frog Robot for Arduino Graphical Programming kit(KS0446).

This OTTO kit contains a HC-06 Bluetooth module, using Bluetooth 2.0, only compatible with Android phone. But frog robot kit contains a HM-10 Bluetooth module, compatible with both Android and iOS phone.

When using, as long as the Bluetooth module is not involved, these two product kits can use the common source code.

Check relevant info of frog robot kit from the link:

https://wiki.keyestudio.com/KS0446_Keyestudio_Frog_Robot_for_Arduino_Graphical_Programming

6.Resources

Otto website: https://www.ottodiy.com/

Tutorial from: https://www.thingiverse.com/thing:1568652/##files

Otto Instructions Manual and Otto DIY-AllFiles: https://fs.keyestudio.com/KS0358

More Codes from: https://github.com/OttoDIY/DIY

Index

EnableInterrupt

New Arduino interrupt library, designed for all versions of the Arduino.
NEW: 644/1284 support, using the Mighty1284 as the basis. See https://github.com/maniacbug/mighty-1284p.
Functions:

enableInterrupt- Enables interrupt on a selected Arduino pin.
disableInterrupt - Disables interrupt on the selected Arduino pin.

*What’s New? Tue Jun 23 06:47:10 CDT 2015 Version 0.8.1 of the library has
been released. This release includes a compiler directive that allows you
to query a variable and know which pin triggered the interrupt
(sorry, this capability is not available on the Due). See https://github.com/GreyGnome/EnableInterrupt/wiki/Usage#Determine_the_Pin_That_Was_Interrupted

(update: I forgot to include some fixes for an issue with the 1284 chip. This has now been included.)

The EnableInterrupt library is a new Arduino interrupt library, designed for
all versions of the Arduino- at this writing, the Uno (and other ATmega328p-based
boards, like the mini), Due, Leonardo (and other ATmega32u4-based boards, like the
Micro), the Mega2560 (and other ATmega2560-based boards, like the MegaADK),
and for non-Arduino 644/1284p-based projects (using the Mighty1284 for support files
and pin numbering). It enables you to assign an interrupt to pins on your chip
that support them, and presents a common interface to all supported chips. This
means that on the Arduino Uno and Mega you don’t give it an interrupt number, as per
http://arduino.cc/en/Reference/attachInterrupt. Rather, your first argument is a
pin number of a pin that’s supported on that chip (see
https://github.com/GreyGnome/EnableInterrupt/wiki/Usage#pin–port-bestiary).

Download

See the https://github.com/GreyGnome/EnableInterrupt/wiki/Download page to
download the library.

More Information

See the Wiki at https://github.com/GreyGnome/EnableInterrupt/wiki/Home .
For detailed usage information see https://github.com/GreyGnome/EnableInterrupt/wiki/Usage .

See the examples subdirectory in the distribution or in this Git site for code examples.

See the extras subdirectory in the distribution or in this Git site for License and Release Notes.

For a tutorial on interrupts, see
http://www.engblaze.com/we-interrupt-this-program-to-bring-you-a-tutorial-on-arduino-interrupts/
The posting gets into low-level details on interrupts.

NOTICE Many of the interrupt pins on the ATmega processor used in the Uno,
Leonardo, ATmega2560, and ATmega644/1284p are “Pin Change Interrupt pins”. This means
that under the sheets, the pins only trigger on CHANGE, and a number of pins share a
single interrupt subroutine. The library enables these interrupt types to appear
normal, so that each pin can support RISING, FALLING, or CHANGE, and each pin
can support its own user-defined interrupt subroutine. But there is a significant
time between when the interrupt triggers and when the pins are read to determine
what actually happened (rising or falling) and which pin changed. Therefore, these
pins are not suitable for fast changing signals, and under the right conditions
such events as a bouncing switch may actually be missed. Caveat Programmer.
If you’re concerned about this, continue to read the following information and
make sure to read the wiki pages; especially see https://github.com/GreyGnome/EnableInterrupt/wiki/Usage#atmega-processor-interrupt-types .

ATmega Processor Interrupt Types

Note that the ATmega processor at the heart of the Arduino Uno/Mega2560/Leonardo/ATmega1284
has two different kinds of interrupts: “external”, and “pin change”.
For the list of available interrupt pins and their interrupt types, see the
PORT / PIN BESTIARY, below.

External Interrupts
There are a varying number of external interrupt pins on the different
processors. The Uno supports only 2 and they are mapped to Arduino pins 2 and 3.
The 2560 supports 6 usable, the Leonardo supports 5, and the ATmega1284p supports 3.
These interrupts can be set to trigger on RISING, or FALLING, or both (“CHANGE”)
signal levels, or on LOW level. The triggers are interpreted by hardware, so by
the time your user function is running, you know exactly which pin interrupted at
the time of the event, and how it changed. On the other hand, as mentioned there
are a limited number of these pins.

Pin Change Interrupts
On the Arduino Uno (and again, all 328p-based boards) and 644/1284-based boards,
the pin change interrupts can be enabled on any or all of the pins. The two
pins 2 and 3 on 328p-based boards, or three pins (2, 10, and 11) on the
1284-based boards support either pin change or external interrupts. On 2560-based
Arduinos, there are 18 pin change interrupt pins in addition to the 6 external
interrupt pins. On the Leonardo there are 7 pin change interrupt pins in addition
to the 5 external interrupt pins. See PIN BESTIARY below for the pin numbers and
other details.

Pin Change interrupts trigger on all RISING and FALLING signal edges.
Furthermore, the processor’s pins, and pin change interrupts, are grouped into
“port”s, so for example on the Arduino Uno there are three ports and therefore
only 3 interrupt vectors (subroutines) available for the entire body of 20 pin
change interrupt pins.

The Library and Pin Change Interrupts
When an event triggers an interrupt on any interrupt-enabled pin on a port, a
subroutine attached to that pin’s port is triggered. It is up to the interrupt
library to set the proper port to receive interrupts for a pin, to determine
what happened when an interrupt is triggered (which pin? …did the signal rise,
or fall?), to handle it properly (Did we care if the signal fell? Did we care
if it rose?), then to call the programmer’s chosen subroutine. This makes the
job of resolving the action on a single pin somewhat complicated. There is a
modest slowdown in the interrupt routine because of this complication. Perhaps
more importantly, there is some latency between the interrupt and the system
determining exactly which pin and what change caused it. So the signal could
have changed by the time the pin’s status is read, returning a false reading
back to your sketch. For a review of this issue see
https://github.com/GreyGnome/EnableInterrupt/blob/master/Interrupt%20Timing.pdf

USAGE:

Basic Usage

enableInterrupt- Enables interrupt on a selected Arduino pin.

enableInterrupt(uint8_t pinNumber, void (*userFunction)(void), uint8_t mode);
or
enableInterrupt(uint8_t interruptDesignator, void (*userFunction)(void), uint8_t mode);

The arguments are:
* pinNumber - The number of the Arduino pin, such as 3, or A0, or SCK. Note that
these are *not* strings, so when you use A0 for example, do not use quotes.
* interruptDesignator- very much like a pin. See below.
* userFunction - The name of the function you want the interrupt to run. Do not
use a pointer here, just give it the name of your function. See the example code
in the Examples directory.
* mode - What you want the interrupt to interrupt on. For Pin Change Interrupt
pins, the modes supported are RISING, FALLING, or CHANGE.
** RISING - The signal went from "0", or zero volts, to "1", or 5 volts.
** FALLING - The signal went from "1" to "0".
** CHANGE - The signal either rose or fell.

For External Interrupts, the same modes are supported plus the additional mode
of LOW signal level.
** LOW - The signal is at a low level for some time.

Each pin supports only 1 function and 1 mode at a time.

disableInterrupt- Disables interrupt on a selected Arduino pin.

disableInterrupt(uint8_t pinNumber);
or
disableInterrupt(uint8_t interruptDesignator);

	interruptDesignator: Essentially this is an Arduino pin, and if that’s all you want to give
the function, it will work just fine. Why is it called an “interruptDesignator”, then? Because
there’s a twist: You can perform a bitwise “and” with the pin number and PINCHANGEINTERRUPT
to specify that you want to use a Pin Change Interrupt type of interrupt on those pins that
support both Pin Change and External Interrupts. Otherwise, the library will choose whatever
interrupt type (External, or Pin Change) normally applies to that pin,
with priority to External Interrupt.

	The complexity is because of pins 2 and 3 on the ATmega328-based Arduinos, and pins 2, 10,
and 11 on 1284-based boards. Those are the only pins on the processors supported by this
library that can share External or Pin Change Interrupt types. Otherwise, each pin only supports
a single type of interrupt and the PINCHANGEINTERRUPT scheme changes nothing. This means you can
ignore this whole discussion for ATmega2560, ATmega32U4, or SAM3X8E (Due)-based Arduinos.

It is possible to change the user function assigned to an interrupt after enabling it (if you
want). Later in your code simply disable the interrupt and enable it with a different function.

Determine the Pin That Was Interrupted

There is a facility in the library to identify the most recent pin that triggered an interrupt. Set the following definition ‘’’before’’’ including the EnableInterrupt.h file in your sketch:

 #define EI_ARDUINO_INTERRUPTED_PIN

Then, the ATmega chip will set a variable with every interrupt, and you can query it to find which pin interrupted your sketch. The variable is arduinoInterruptedPin and it is of type uint8_t.

See the https://github.com/GreyGnome/EnableInterrupt/wiki/Usage wiki page for more information.

PIN / PORT BESTIARY

Theoretically pins 0 and 1 (RX and TX) are supported but as these pins have
a special purpose on the Arduino, their use in this library has not been tested.

Summary

Arduino Uno/Duemilanove/etc.

	Interrupt Type

	Pins

	External

	2 3

	Pin Change

	2-13 and A0-A5

	Arduino Mega2560

	

	Interrupt Type

	Pins

	————–

	————–

	External

	2 3 and 18-21

	Pin Change

	10-15 and A8-A15 and SS, SCK, MOSI, MISO

	Arduino Leonardo

	

	Interrupt Type

	Pins

	————–

	————–

	External

	0-3 and 7

	Pin Change

	8-11 and SCK, MOSI, MISO

	Mighty 1284

	

	Interrupt Type

	Pins

	————–

	————–

	External

	2 10 11

	Pin Change

	0-31 (aka: 0-23 and A0-A7)

Details

Arduino Uno

Interrupt Pins:
Arduino	External Arduino Pin Change Arduino Pin Change
Pin Interrupt Pin Interrupt Pin Interrupt
 Port Port Port
2 INT0 PD2 2 PCINT18 PD2 A0 PCINT8 PC0
3 INT1 PD3 3 PCINT19 PD3 A1 PCINT9 PC1
 4 PCINT20 PD4 A2 PCINT10 PC2
 5 PCINT21 PD5 A3 PCINT11 PC3
 6 PCINT22 PD6 A4 PCINT12 PC4
 7 PCINT23 PD7 A5 PCINT13 PC5
 8 PCINT0 PB0
 9 PCINT1 PB1
 10 PCINT2 PB2
 11 PCINT3 PB3
 12 PCINT4 PB4
 13 PCINT5 PB5

Leonardo Pins LEONARDO

Interrupt pins:
Arduino Arduino
Pin External Pin Pin Change
 Interrupt Interrupt
 Port Port
 3 INT0 PD0 8 PCINT4 PB4
 2 INT1 PD1 9 PCINT5 PB5
 0 INT2 PD2 10 PCINT6 PB6
 1 INT3 PD3 11 PCINT7 PB7
 7 INT6 PE6 SCK/15 PCINT1 PB1
 MOSI/16 PCINT2 PB2
 MISO/14 PCINT3 PB3

 on ICSP:
 SCK/15: PCINT1 (PB1)
 MOSI/16: PCINT2 (PB2)
 MISO/14: PCINT3 (PB3)

// Map SPI port to 'new' pins D14..D17
static const uint8_t SS = 17;
static const uint8_t MOSI = 16;
static const uint8_t MISO = 14;
static const uint8_t SCK = 15;
// A0 starts at 18

ATmega2560 Support

External Interrupts --
The following External Interrupts are available on the Arduino:
Arduino
 Pin PORT INT ATmega2560 pin
 21 PD0 0 43
 20 PD1 1 44
 19 PD2 2 45
 18 PD3 3 46
 2 PE4 4 6
 3 PE5 5 7
 n/c PE6 6 8 (fake pin 75) **
 n/c PE7 7 9 (fake pin 76)

Pin Change Interrupts --

ATMEGA2560 Pin Change Interrupts
Arduino Arduino Arduino
 Pin PORT PCINT Pin PORT PCINT Pin PORT PCINT
 A8 PK0 16 10 PB4 4 SS PB0 0
 A9 PK1 17 11 PB5 5 SCK PB1 1
 A10 PK2 18 12 PB6 6 MOSI PB2 2
 A11 PK3 19 13 PB7 7 MISO PB3 3
 A12 PK4 20 14 PJ1 10
 A13 PK5 21 15 PJ0 9
 A14 PK6 22 0 PE0 8 - this one is a little odd. *
 A15 PK7 23

The library supports all interrupt pins, even though not all pins to the
ATmega-2560 processor are exposed on the Arduino board. These pins are
supported as “fake pins”, and begin with pin 70 (there are 70 pins on the
ATmega 2560 board). The fake pins are as follows:

pin: fake70 PJ2 this is Pin Change Interrupt PCINT11
pin: fake71 PJ3 this is Pin Change Interrupt PCINT12
pin: fake72 PJ4 this is Pin Change Interrupt PCINT13
pin: fake73 PJ5 this is Pin Change Interrupt PCINT14
pin: fake74 PJ6 this is Pin Change Interrupt PCINT15
pin: fake75 PE6 this is External Interrupt INT6
pin: fake76 PE7 this is External Interrupt INT7

	Note: Arduino Pin 0 is PE0 (PCINT8), which is RX0. Also, it is the only other
pin on another port on PCI1. This would make it very costly to integrate with
the library’s code and thus is not supported by this library. It is the same
pin the Arduino uses to upload sketches, and it is connected to the FT232RL
USB-to-Serial chip (ATmega16U2 on the R3).

Mighty 1284 Support
The ATmega 1284p shares pinout with the 644; the only difference is in memory
size. We use the “Mighty 1284” platform as our model, because the needed files are
mature and complete.

Interrupt Pins:
Mighty External Mighty Mighty
Pin Interrupt Pin* PORT PCINT ATmega644/1284 pin Pin* PORT PCINT ATmega644/1284 pin
 Port 0 PB0 8 1 15 PD7 31 21
2 INT2 PB2 1 PB1 9 2 16 PC0 16 22
10 INT1 PD2 2 PB2 2 3 17 PC1 17 23
11 INT0 PD3 3 PB3 11 4 18 PC2 18 24
 4 PB4 12 5 19 PC3 19 25
 5 PB5 13 6 20 PC4 20 26
 6 PB6 14 7 21 PC5 21 27
 7 PB7 15 8 22 PC6 22 28
 8 PD0 24 14 23 PC7 23 29
 9 PD1 25 15 31/A7 PA7 7 33
 10 PD2 26 16 30/A6 PA6 6 34
 11 PD3 27 17 29/A5 PA5 5 35
 12 PD4 28 18 28/A4 PA4 4 36
 13 PD5 29 19 27/A3 PA3 3 37
 14 PD6 30 20 26/A2 PA2 2 38
 25/A1 PA1 1 39
 24/A0 PA0 0 40

 _images/e99769584120c646e1c180257d29efa2.png

_images/ee05c2b559e4dd4528acbbd57d01ceb1.png

_images/416adb9fe3c08b1881ecb2bbd214ebd7.png
_ moauxmm

_images/f845fae7d776072a5c8467386db522a6.png
I

_images/43c5df805bef798f3eec44a30363dbae.png

_images/fd8bcc083e7babb821d38668bece034b.png

_images/22073ba5cda5d729e52c5b5623faa12d.png
*cable colors may vary *AA batteries not included
A before using batteries test with USB first

_images/f00defea7ed3d71d4ae1a2dbf4880a18.png

_images/2e3d4725f4be4a82ece615f2d8b76beb.png
connect and power with USB and test servo motors

before using any kind of batteries

A

read the coding guides!

_images/f13000383f5a1690ea232ad848870d99.png

_images/5f619e7a01e3f2bc535c94236ee98f5d.png

_static/file.png

_images/62e811a6d1c6fb7c7aa9649797db78cd.jpeg
ultrasound sensor for objet detection

USB for programming and POWER
NOT FOR BATTERY RE-CHARGE

__quick snap assembly

__2legs for walk and dance

expandable and customizable with
3D printing and sensors.

4AA batteries* last up to 2 hours.

robot beeps that represent moods

*AA batteries not included

_static/minus.png

_images/5465b14fbb9cd4b60bdf2ad33a9226f3.png

_images/567b27b5f7235dab77c38fda956f1d7e.png
Oni3s oo

ooom
0 ZQGND 158 OX XL

Keyestudio z

- .u.\. (=]

J‘ﬂ AA Battery

Kianeg vv

_images/72e52aeecb0fcb11756c91170c39a69e.png

_images/867d75d75146b6b372140835a5073acc.png

_images/0eebaed3c7952d74550843a439d7d2f0.png

_images/175d38e8e126b8ea7190970a172f7fff.png

_images/0beb27450ba1ff02aa531d089696bf3e.jpeg
‘)
‘WA A“j

you will be able to build your own Otto in as little as two hours!
easy to build and disassemble with a simple screwdriver.

detect & beeps &

avoid 8bit music

obstacles

walk dance open source

easy to 3D expand,

o >

_images/0e0fe3bf2b35d0017bb9f14f97561144.png

_images/1a26fcb47032604f7cc2068794430152.png

_images/983fa1c0c93098b8f8c52b380e006fba.png
‘ARDUINO
o

00|

4T

i
L —

nav.xhtml

 Table of Contents

 		
 <no title>

 		
 Keyestudio Electronic Parts DIY Kit For OTTO Robot Maker

 		
 1.What is Otto DIY ?

 		
 2.Kit List

 		
 3.3D Printing Parts

 		
 4.Print Settings

 		
 5.Build Your Own Otto Robot:

 		
 6.Resources

_static/plus.png

_images/048cf1bb7d8dd5b9a59cdf9144895b77.png

_images/c2179c20c6da593bf1ad30c9de3645b7.png

_images/06729f8b25221fa14fdf465d2844a2c7.png
*cable colors may vary

|

_images/c784a5f6e95a5afedd55c75816df3ca3.png
s
e s

_images/b04baed9af83d7c4e30fc36fb77f66e0.png

_images/bd5597765ffdd85d1c6aef1081e13fc4.png

_images/d5af9416e94154e9ac24ab98291cdb3b.png
% 3D printed Head F/F connector cable X6

76 ultrasound sensor

Si— 2B Arduino NANO shield
1 -

{ak) Arduino NANO

Eﬂ Bluetooth
[

- mm battery case*
T

mini cross screwdriver

T

17
" mini usb cable
L24 micro servo motor x4

,7@ 3D printed body

E pointed screw x8

- m 3D printed Leg x2

==

\J

*AA batteries not included

_images/db51e60f109d9b98e9716211f07742bf.png

_images/c92d32eef9845e3499df189933b79b90.jpeg
[G000 0000J00000000,

9-8-7"¢.Jhi & 373

1o Lo
e
sllefnns ias]
. gl N7
» RESET A0 Al A2 A3 A4 AS A6 A7 ©

[I~ "RO00000NO00000

keyestudio

R|_ecoswio—]
\ 0

keyestudio

A\

keyestudio

QL wcrosewvo |
A\

_images/cebc579eab41a39a25240ebf56323978.png

_images/e80aa76f0a10362052be08c2180c593b.jpeg

